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Fraud Informatics (FI) Project

l NSF SaTC EDU Grant (2018 – 2021)
l Joint effort between Penn State and ORAU
l To develop and evaluate materials to teach 

modern types of cyber frauds to diverse 
audience
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Objectives

l Cover latest modern types of cyber frauds
l Cover latest research on the prevention and 

detection of cyber frauds
l AI methods
l Data-driven
l Information-processing

l Develop media-rich hands-on materials
l Images and videos
l Hands-on labs using games and tools
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Formats of Delivery

1. 1-2 hour-long
l Fraud informatics “hygiene”
l K12 students or general audience
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2. 2-3 week long
l Special topic plug-in to other related classes
l CompSci undergraduates

3. Semester-long
l Dedicated class on Fraud Informatics
l CompSci undergraduates



What is “Fraud”?

l Oxford dictionary
l “wrongful or criminal deception intended to result 

in financial or personal gain”

l Van Vlasselaer et al. (2015)
l “Fraud is an uncommon, well-considered, 

imperceptibly concealed, time-evolving, and often 
carefully organized crime which appears in many 
types of forms”

l 5 characteristics
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“Traditional” (Consumer) Frauds
l Credit card fraud
l Insurance fraud
l Product warranty 

fraud
l Healthcare fraud
l Money laundering
l Identity theft
l Telecommunications 

fraud
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Cyberspace



“Modern” Frauds in Cyberspace

l Spam/Phishing, and Social Engineering 
Fraud

l Fake News
l Deepfake
l Astroturfing and Crowdturfing
l Sockpuppet and Catfish
l Academic Fraud
l …
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Other Important
modern cyber frauds?



Fraud Informatics

l Modern frauds need to be solved and taught 
in multiple disciplines and subjects

l Computer Science (and AI)
l Cognitive Science
l Business
l Criminology 
l Law
l Policy …
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Avoid topics from
traditional classes on
Network, Systems,

IoT securities



1. PHISHING
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Terms

l Spamming: Unsolicited email/letter/SMS/…

l Social Engineering Attack: Psychological
manipulation of victims for deception
l Phishing = “ph” + fishing
l Vishing = Voice Phishing
l Spear Phishing
l Whaling
l …
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Targeted
Personalized

Human-written
Small-scale

è
Higher success rate 

for attackers



Psychological Aspect

l Experiment in West Point, 2004
l Researchers sent a phishing email to 512 

cadets, pretending it to be coming from a 
fictitious Colonel, asking them to click a 
malicious link regarding a grade change 
problem

l 80% of cadets clicked the link

l WHY so high? 
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Phishing Email
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Phishing Email
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Spear Phishing Email
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Spear Phishing Email
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Vishing
16

https://www.youtube.com/watch?v=BEHl2lAuWCk



Personalized Attack

l How do attackers get information about 
victims?

l Scavenger-hunting, Hacking

l Data-driven guessing
l Eg, by analyzing one’s social media data, AI can 

accurately predict diverse demographics of users
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You Are What You LIKE

l Hypothesis: The LIKE pattern in social media 
is correlated with one’s personal traits

18



19

Kosinski et. al.,
PNAS 2013
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Kosinski et. al.,
PNAS 2013



Personality Prediction
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Machine
Accuracy

Youyou et. al.,
PNAS 2015



Scenario
l From LIKE data, an attacker predicted a 

victim to be:
l An African American Christian female in her 20s 

living in NYC…

l More personalized spear phishing email can be 
written
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Dear Ms. Jane Doe, pardon for this interruption.

I am a pastor living in Queens ...



How to Spot Phishing Emails?

l Discussion
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Lab: Domain Highlighting
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https://www.ucl.ac.uk/cert/antiphishing/



Lab: Phishing
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https://beinternetawesome.withgoogle.com/en/interland/landing/reality-river



Attack-Back #1
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https://www.youtube.com/watch?v=_QdPW8JrYzQ



Attack-Back #2
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https://www.youtube.com/watch?v=t7kSWvt3KXY



2. ASTROTURFING

28



Definition

l Astroturf: fake grass(roots)
l Examples

l Fake LIKEs in facebook
l Orchestrated fake reviews in amazon.com
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Power of LIKE
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LIKE Us or Get Out !
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PBS Frontline, 2014
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http://www.pbs.org/wgbh/pages/frontline/generation-like/



Fake LIKEs
l People buy and sell Likes
l Huge commercial implications
l Headache for SNS to maintain healthy eco-

system 
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Training Data for Machine Learning
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Fake LIKE

Legit LIKE

Broker-Initiated
Market

Buyer-Initiated
Market

Satya et. al.,
CIKM 2016



Honeypot Page
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http://www.bbc.com/news/technology-22166606



39

http://www.nytimes.com/2012/08/26/business/book-reviewers-for-hire-meet-a-demand-for-online-raves.html



Synthesized Amazon Reviews
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Credit: Ben Zhao @ U. Chicago
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LAB

l Using FakeSpot (https://www.fakespot.com/), 
try a few Yelp restaurant reviews
l Any restaurants with B or lower grade?
l Understand the analysis of low grade

l Using ReviewMeta (https://reviewmeta.com/), 
try a few Amazon product reviews
l Any product with FAIL rating?
l Understand the analysis of FAIL rating
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https://www.fakespot.com/)
https://reviewmeta.com/)
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3. FAKE NEWS
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False Information
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Source: Zhou et al., WSDM Tutorial 2019

Definitions of False Information



Types of False Information
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Real News
Commentary / 

Feature 
Writing

Misreporting
Native 

Advertisement
Professional 

Political 
Content

Citizen 
Journalism

Satire / 
Clickbaits 

Polarizing and 
Sensationalist 

Content
Fake News / 

Hoaxes



Surge of “Fake News”: Google Trend
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Misinformation

Fake News

US Election @ Nov. 2016



More Problems in Social Media?
1. Fundamental shift in communication: 

Consumer as producer 
2. Monetary incentives: Ads by Google/Facebook
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More Problems in Social Media?
3. Source Layering
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More Problems in Social Media?
4. Virality
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Source: https://www.knightfoundation.org/features/misinfo

In 2016, social bots played 
a significant role in 

spreading false information



More Problems in Social Media?
4. Virality
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Source: Vosoughi et al., Science 2018



To Detect False Information

l Human Based
l Manual fact-checking
l Crowdsourcing based

l Machine Based
l AI approach

l DB approach
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Fake
True

True

FakeQuery



AI: Machine Learning Approach
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In Training

In Deployment

l Learning
l P: Features from “fake” news
l N: Features from “true” news

l Feed (P, N) to ML to build a model M

l Feed a news story A to M
l M determines if A is fake or true news story



LAB: Fake-O-Meter

l In your smartphone browser, go to 
Kahoot.it

l Enter Game PIN, and Nickname to play
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Educational Fake News Games
l http://factitious.augamestudio.com/
l https://www.fakeittomakeitgame.co

m/
l https://playfakenews.com/
l https://hoaxy.iuni.iu.edu/fake-

news-game/

l http://fakenews.game/
l https://boardgamegeek.com/board

game/235085/fake-news-or-not
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http://factitious.augamestudio.com/
https://www.fakeittomakeitgame.com/
https://playfakenews.com/
https://hoaxy.iuni.iu.edu/fake-news-game/
https://boardgamegeek.com/boardgame/235085/fake-news-or-not
https://boardgamegeek.com/boardgame/235085/fake-news-or-not
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https://www.fakeittomakeitgame.com/

LAB: Play Game (30 minutes)



4. DEEPFAKE
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New Challenge: “Deepfakes”

1. AI method (GAN) generated artifacts
2. Manipulated artifacts hard to distinguish

l Not “Shallowfakes”

l Explosive effect ç When used in social 
media together with:
l False information, Social bots, Clickbaits
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Landscape of “Deepfakes”

l 14,678 deepfake videos [DeepTrace, 2019]
l 96% are pornographic videos

60



Eg, Deepfaked Text #1
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Grover by
U. Washington



Eg, Deepfaked Text #2
62GPT-2 by OpenAI

Human

Machine



Eg, Deepfaked Image
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64http://thispersondoesnotexist.com

1 2 3 4

5 6 7 8

9 10 11 12
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https://thisrentaldoesnotexist.com/



Eg, Deepfaked Video #1
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Eg, Deepfaked Video #2
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Eg, Deepfaked Video #3
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Eg, Deepfaked Video #4
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Eg, Deepfaked Video #4
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Eg, Deepfaked Video #5
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Potential Deepfake Scenario
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single image

1-min audio

Simple Animation

hour-long video

Eg, Samsung AI

Synthesized Audio
Eg, Lyrebird AI

Synthesized Video

Eg, Stanford / 
UW / Albany
AI methods

text transcript

text 
transcript



If I were an Adversary …
l Human adversary

l Create a fake image/video
l Write a fake news story
l Plant it into social media (via bots)

l Machine adversary with deepfake capability
l BEGIN
l Synthesize a fake image/video
l Synthesize a fake news story
l Plant it into social media (via bots)
l END
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Repeat
Million
times



Implications

l No known instances in which deepfakes have 
actually been used in disinformation 
campaigns” – Deeptrace, 2019

l Documentation is no longer evidence
l “Implied false effect”
l “Reality apathy” – Aviv Oyadya, 2019
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“The Liar’s Dividend” 
-- Robert Chesney 
and Danielle Citron



Arms Race against Deepfakes
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Arms Race against Deepfakes
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More Thoughts
l Technological solutions alone cannot solve 

the problem of false information (and 
deepfakes)

1. Detection does not directly lead to removal
l Eg, slowed-down Pelosi video

2. Not fast enough
l Eg, virality of false information

3. Little help to real victims
l Eg, deepfaked porn videos

77

Source:
Angela Chen, MIT 

Technology
Review, 2019



More Thoughts
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Detection
Deterrence & 

Prevention
Presentation & 

Acceptance

Social Legal Education

Policy

. . .

Current focus of 
computational methods

False Information



Development Timeline

l Plan to release V1 of materials: Dec 15, 2019

l Recruit instructors to use part of materials in 
their classes in Spring and Summer 2020
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2-3 week long version
l Special topic plug-in to other related classes
l CompSci undergraduates



Download of Materials
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https://tinyurl.com/fraud-informatics


