

Introduction

Steganography is the process of hiding a message, or payload, inside of a digital image, or cover in a way that is imperceptible to the human eye. An image with hidden data is referred to as a stego. Steganalysis is the study of detecting whether an image contains hidden data.

Creating Stego Images

We created stego images using the following:

- Payloads: bit-strings of zeros and ones
- Covers: 256-grayscale png images
- Embedding rates: 10%-90%
- Embedding algorithms:
 - 1. Lexicographical Least Significant Bit (LSB) Replacement

2. Random LSB Replacement

LSB replacement embeds a payload in a cover by replacing the least significant bits of the cover's pixel values with the payload bits.

Figure 1: The eight bit planes from most significant bit to least significant bit⁴

Materials and Methods

This research is divided into three main parts:

- Creating stego images
- 2. Applying chi-square attack to determine whether an image is stego or cover
- Generating receiver operating characteristic 3. (ROC) curves to measure the accuracy of the chi-square attack

This is all accomplished using the computer program MATLAB.

Bits and Pieces: Steganalysis for Least Significant Bit NIST

Replacement

Macy Neblett², Madelaine Quistgaard⁴, Amanda Rae³, Kahlil Sample¹, Anna Steffensmeier³, Dr. Jennifer Newman³, Stephanie Reinders³ Albany State University¹, Fayetteville State University², Iowa State University³, Upper Iowa University⁴ *Iowa State University Research Experience for Undergraduates*

Chi-Square Attack

A chi-square goodness-of-fit test is used to determine how well the model reflects the observed data.¹ During LSB embedding, the pixel values within one pair $\{2k, 2k+1\}$ k=0,1,...,127 remain locked in that pair. In a stego the expected number of pixels with value 2k denoted h[2k] is the average of the number of pixels with value 2k and 2k+1 denoted $\overline{h}[2k]$. This characteristic allows us to use a chi-square goodness-of-fit test with test statistic below.

Results

We applied the chi-square goodness-of-fit test to the first one percent of pixels, then the first two percent of pixels and so on to 100%. We obtained a p-value for each percentage tested and displayed all one hundred p-values in a "P-Graph." We created P-Graphs for each cover and stego image.

p-values at one where the image is embedded. The p-values drop to zero when the image is no longer embedded with the message.

Conclusions

The p-graphs generated from the chi-square attack show that the chi-square attack is effective in detecting stego images that were embedded in the least significant bit lexicographically. The p-graphs also demonstrate that this method is not effective for detecting stego images that were embedded using other methods. The ROC curves generated from the p-values of the cover and stego images demonstrates the accuracy of the chi-square attack. This research lays the foundation for future studies into other methods of detecting stego images that were embedding using nonlexicographical LSB replacement.

References

Center for Statistics and Forensic Evidence (CSAFE); National Institute of Standards and ¹Chi-Square Goodness of Fit Test. (n.d.). Retrieved July 24, 2017, from Technology (NIST); Sam Tyner, Statistics Department, Iowa State University; Joe Papio, http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm Statistics Department, Iowa State University. ²Fridrich, J. (2010). *Steganography in digital media: principles, algorithms,* and applications. Cambridge: Cambridge University Press. Print. ³Mandal, J. K., Satapathy, S. C., Sanyal, M. K., & Bhateja, V. (2017). Proceedings of the First International Conference on Intelligent Computing and Communication. Singapore: Springer Singapore. Print. Inversity in the state of the s ⁴P. Buonora and F. Liberati. A format for digital preservation of images: a study on JPEG 2000 file robustness. *D-Lib Magazine*, 14(7/8), August 2008.

$$S = \sum_{k=0}^{127} \frac{\left(h[2k] - \overline{h[2k]}\right)^2}{\overline{h[2k]}}$$

demonstrates that the chi-square attack is not effective for detecting stego images that were embedded randomly.

Acknowledgements

U.S. Department of Commerce

the overall accuracy of a test. The ROC curve is created by plotting the true positive rate against the false positive rate.

UNIVERSITY